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ABSTRACT

We present a variation of the supervised approach to
image classification in which specific forest stand
attributes are recognized as the label for a training area.
We have developed condition specific spectral classes that
have lower variances than classes developed by traditional
methods. We find these classes to be consistently
correlated to various forest types and less likely to
represent commission errors than the more variable classes
developed by traditional methods. The large number of
classes (150-200) thus produced would be difficult to handle
if they were not aggregated into a polygon map. We also
describe a variation on the use of unsupervised training,
for classifying those regions not classified by supervised
methods.

INTRODUCTION .

A recently passed California State Assembly Bill, AB
1580, directs the California State Resources Agency to
convene a Timberlands Task Force to improve the protection
of wildlife resources, and resolve issues concerning their
management. One of the directives within the task force
workplan is to develop a coordinated base of scientific
information regarding the location, extent, and species
composition of timberland ecosystems in California. Lack of
a comprehensive habitat database of the detail and extent
necessary to model wildlife habitats required that new
timberlands information be developed. The Task Force
responded by initiating a pilot study, managed by the
California Department of Forestry and Fire Protection (CDF),
Forest and Rangelands Resources Assessment Program (FRRAP),
that would utilize Landsat satellite imagery and automated
data processing techniques to identify and map habitat types
on two study areas within the XKlamath Province in northern
California.

CDF-FRRAP initiated a contract in 1990 with Geographic
Resource Solutions (GRS), an image processing and GIS
consulting firm, to map Wildlife Habitat Relationships (WHR)
cover types (Mayer and Loudenslayer, 1988) over a six
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million acre study area in northwest and north-central
California. GRS is using Landsat, Thematic Mapper, digital
imagery to create this vegetation layer, throughout the
project area. CDF-FRRAP, the Mapping and Wildlife Advisory
Committees, the California Interagency Wildlife Task Group,
and GRS participated in the development of rules that would
identify the WHR types and provide a systematic approach to
the classification and determination of WHR habitat types
and classes (Table 1).

Table 1: Classification Scheme for WHR Types

WHR Vegetation Classes:

Subalpine Conifer Jeffrey Pine
Red Fir . Ponderosa Pine
White Fir Eastside Pine
Douglas-fir Pinyon-Juniper
Redwood Juniper

Closed-Cone Pine/Cypress Mixed Conifer
Montane Hardwood/Conifer Hardwood

Lodgepole Pine Shrub
Herbaceous/Forb Barren
Water
WHR Tree Canopy Closure Classes: WHR Size Classes:
Class Canopy_Closure Class Average Tree Size
(QMD)
0 Non-vegetation types 0 Non-tree types
1 :10 - 24% (SPARSE) 1 0.0 - 5.9"
2 25 - 39% (OPEN) 2 6.0 - 10.9"
3 40 - 59% (MODERATE) 3 11.0 - 23.9"
4 >= 60% (DENSE) 4 24.0 - 35.9"
5 >= 36.0"

WHR Canopy Closure Classes for non-tree vegetation:

Class Canopy Closure
2 10 - 39%
3 >= 40%

WHR Structure Classes:

Class Structure

UNDF Non-tree type

E Even

U Multi-layered(Uneven)

o

Obijectives
The primary goal of the pilot study has been to provide
information about the feasibility of developing GIS
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databases and mapping timberlands using Landsat Thematic
Mapper imagery.

Our specific objectives are to:

1. Define a methodology for developing a WHR habitat,
polygon database, based upon Landsat image
classification methods and raster to vector conversion
routines, that is feasible, repeatable, and cost-
effective so that it could be consistently applied to
the entire state and enable automated map updates.

2. Compare the WHR habitat database, created for a 200,000
acre subset of the project area, using a 5-acre minimum
size mapping unit with a data base of the same region,
using a 40-acre minimum size mapping unit.

3. Perform an assessment of the accuracy of each WHR
characteristic estimated using this methodology.

Our purpose in this paper is to discuss the methodology
used for Landsat image classification (the first part of
objective 1). A companion paper, also in this session, by
K. Stumpf and J. Koltun (1992) will address the comparison
of minimum mapping units (objective 2) and the general issue
of converting raster classifications to polygon maps (the
last part of objective 1). The accuracy assessment

(objective 3) is currently underway and will be reported at
a later date.

Proiject Area
Two regions within the Klamath Ecological Province were

selected for the Mapping Pilot Study, Project Area
(Figure 1).q_ :

The coastal area contains approximately 5.2 million acres
and comprises Del Norte, Humboldt, and Mendocino counties.
The inland region is a 1 million acre rectangle centered
about Mt. Shasta. These areas were chosen to encompass a
wide variety of vegetation types, including the old growth
redwood and Douglas-fir habitats of the northern California
coast. Within the coastal region, a smaller area was
evaluated to compare the effects of changing the minimum

mapping unit from forty, to five acres (Stumpf and Koltun,
1992).

DIGITAL IMAGE PROCESSING

We used Intergraph software and hardware and custom
programed utilities to integrate image processing
techniques, grid modeling, and GIS analysis. This
methodology incorporated a combination of supervised and
unsupervised techniques to classify the TM imagery.

Satellite Imagery

Five TM scenes provided the basis for the classification
of the project area. The imagery was geo-corrected for
terrain and satellite-orientation distortions and resampled
to a pixel size of 25 meters by Hughes STX Corporation. Due
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Figure 1. The study area for the Klamath mapping pilot
project. ,

to unfavorable weather conditions and the poor data quality
of one scene, the five scenes used for this project were
acquired on two different dates. Three of the scenes were
acquired on June 27, 1990 and two, on May 1, 1990. We did
not consider these to be optimum dates. Coincident dates in
the early summer (near the summer solstice) would have been
preferable to minimize terrain shadowing and capture maximum
spectral diversity between forest types.

Collateral Data

Thematic data of different formats and from multiple
sources have been translated and incorporated into the
project databases. These data have assisted in the
organization, planning, and review of the classification
processes. Themes used in this effort include:
transportation, hydrology, vegetation type, elevation,
ownership, political boundaries, latitude-longitude
projection grids, and regeneration/stocking status data.
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Collateral information was not incorporated into the WHR
classification but rather we relied on spectral signature
alone to identify WHR types. We felt strongly that since
this was a pilot project investigating the application of
image processing methods that the results should reflect the
potential of these processes and not be enhanced or altered
by including data, not based on image processing.

Therefore, elevation data were not included to differentiate
between the location of red fir and white fir stands and
soil information was not used to identify areas that
probably supported Jeffrey pine stands rather than ponderosa
pine stands. This information may be incorporated later in
the process, following the determination of the accuracy of
the image processing techniques, if this information
corrects problems identified during the accuracy assessment
phase of the project.

Image Classification Technigues

The compilation of spectral data for the WHR habitat
delineation required the development of image training data
that was linked to quantitative ground data. We used both
supervised and unsupervised training methods since both
training methods offer advantages and limitations (Fox, et
al, 1983). The supervised method is based on homogeneous
training areas selected to develop spectral classes that
represent the vegetation classes, required for the mapping
project. The unsupervised method is based on mathematical
clustering procedures that define spectral classes that may
or may not coincide with the vegetation classes required for
the mapping project. The supervised method alone would have
limited the final classified map to a narrow set of possible
classes, leaving a portion of the image unclassified. The
unsupervised method alone would have been based on spectral
information only, without regard to the vegetation class
characteristics (Lillesand and Kiefer, 1987). Once spectral
signatures were defined, a maximum likelihood algorithm was
used to classify the pixel image (Figure 2).

Our workflow deviates from the standard techniques
outlined in many textbooks (eg, Lillesand and Kiefer, 1987)
in that we did not aggregate our spectral training areas
into WHR categories in order to develop spectral signatures
representing a particular WHR type. 1Instead, we kept each
of our training areas separate and developed spectral
signatures for each training area. The training areas were
selected with the goal of encompassing spectral diversity
visible in the imagery so that blatantly redundant training
areas were not defined. This meant that we could not label
a training area as canopy closure class 3, 40-59 percent
cover, for example, since that spectral signature came from
one training area with one specific canopy closure, 52.3
percent. We decided that a specific percentage of canopy
closure, developed from the ground transects taken in that
training area, was a better estimate of the actual canopy
closure of the spectral class than the WHR closure class.
Similarly, we labeled each of the supervised spectral
classes with specific data on species composition, tree
size, and percentage canopy closure. We therefore developed
spectral class labels that precisely represented the
attributes of the pixels in the training area.
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Figure 2. Schematic work flow for developing spectral
signatures and classifying Landsat Thematic Mapper Data.

A disadvantage of this approach is that we created a
large number of supervised spectral classes (approximately
150 to 200, depending on the region). This precluded the
ability to simply "color the classification" and display a
thematic map, since using 150 colors produces a very
confusing map display. We did not feel this disadvantage to
be a major problem since we were aggregating the pixel map
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into polygon map in order to produce the final vegetation
classification and we could always aggregate the color
scheme by WHR type in order to produce an understandable
display of the vegetation classification.

Supervised Training. Training sets were developed for
multiple TM scenes if they shared the same image acquisition
date and the same bio-region. Training was based on data
collected from representative ground samples (stands) that
were homogeneous in terms of species, size, canopy closure
and structure. A matrix of WHR types was developed to
ensure representation of all WHR attributes present in the
study area. Ground sample transects were then located on
computer screen displays of digital imagery and digitized
into a GIS. Spectral statistics were then developed for
spectrally homogeneous regions surrounding the sample
transects.

The selection of training areas for ground sampling was
based on the vegetative characteristics to be mapped during
the project and the spectral separability of the pixels in a
particular training area. Prior to the ground data
collection, foresters from the different regions were
contacted and interviewed about the vegetation conditions
encompassed by their geographic area of responsibility or
ownership. These interviews proved useful in finding large
homogeneous areas of desired stand characteristics.
Potential training plots were delineated on USGS, 7.5 minute
quad maps, orthophoto products, and the most recent aerial
photography available from the various property owners.
These potential training areas were reviewed for spectral
homogeneity before data were collected.

Ground data were collected for the development of
quantitative information on species composition, percent
canopy cover, tree size in terms of quadratic mean diameter
(QMD), and canopy structure from transects located within
each training area. The ground '"training" data were
measured and collected using a pin-point transect method.
The sampling transect was broken into three, 396-foot
sections, that were laid out in the form of a triangle to
insure that each of these triangles was located within
perceived boundaries of homogeneous stands and away from
stand edges. Canopy closure was calculated from a set of
100 transect points. The field observer viewed vertically
upwards at each point using a custom designed periscope and
recorded ''crown intersection" or "no crown intersection'.

After ground sampling, the training area locations were
transferred into a GIS layer using a computer display of
color composite imagery, DLG data layers, and field survey
data. A stand boundary was digitized around the training
plots and placed as a GIS theme to represent a training area
on the imagery. We included only those pixels that were
immediately surrounding the location of a field data
collection area. Spectral variation was minimized within
the training area by excluding those pixels exhibiting clear
color differences as they were displayed in the color image.
A TM band 5,4,3 (RGB) false-color composite was used to
represent the three major parts of the T™ spectrum in the
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color display: middle infrared, near infrared and visible.
Six of the seven bands of TM data were selected from the
training area for each spectral class. The thermal infrared
band (TM6) was excluded due to high variances evident in
this band. These classes were homogeneous spectrally,
having maximum single band standard deviations of 15 digital
numbers or less. :

The supervised training areas were then evaluated for
spectral separability using Euclidean and J-M distance
statistics. For the portions of the study area completed
thus far, 98 percent of the supervised classes were judged
to be separable from each other spectrally. The inseparable
classes were of early succession plantations representing
the same WHR type so that spectral discrimination was not
expected or necessary.

Supervised Classification. All TM bands (except band 6)
and several transformed bands (NDVI, TM4-TM3/TM4+TM3; TVI,
square root of NDVI; ARCTAN, arc tangent of TM4/TM3; PC1,
the first principal component of TM1, TM2, and TM3) were
considered for use in the final classification. 1In order to
evaluate classification performance, all possible band
combinations including transformed bands were used to
produce multiple classifications of only the pixels in the
training areas. Error analysis reports from these
classifications were reviewed and bands were selected to
maximize correct classification thus minimize band to band
correlation. This selection method yielded different band
combinations for different geographical areas. For example,
two spectral bands, TM bands 4 and 5, and two transformed
bands, the transformed vegetation index (TVI) and the first
principal component of TM bands 1, 2 and 3, where selected
for classification of all habitat components (species, size,
canopy closure, structure) in a portion of the coastal study
area. A maximum likelihood classifier was then used to
perform the classification.

Unsupervised Training. Approximately 15 percent of a TM
data set remained unclassified after classification with a
two-standard deviation threshold placed on the supervised
classifier. In order to classify the remainder of the
image, an unsupervised clustering algorithm was used to
generate unsupervised statistics for about 85 unsupervised
spectral classes. The same TM bands were used in the
development of these statistics as were used to classify the
supervised training areas. The number of unsupervised
classes developed was dependent on the standard deviation
and the Euclidean distances of the classes after two
iterations. If the variance within a class or any number of
classes was above a desired level of 15 digital numbers or
if the Euclidean distances between classes was considered
too close (less than 8 digital numbers) to be considered
unique, then changes were made in the parameters for the
clustering algorithm to merge or divide the classes. This
process was continued until the training statistics met the
desired criteria and migration of data between classes
stopped.
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Unsupervised Classification. The unsupervised class
statistics were used to drive a maximum likelihood
classification with the same bands used in the supervised
approach. This process classified approximately 90 percent
of the image. This process was used to classify the entire
image, not just the pixels left unclassified by the
supervised methods.

Labeling Unsupervised Classes. Some of the unsupervised
classes developed represented non-forest types and were
easily identified in homogeneous regions on the image,
spatially correlated with aerial photographs, and field
notes, and labeled accordingly. However, some of these
classes were associated with forest types, heterogeneous in
their spatial arrangement and exceedingly difficult to
label.

A spatial, GIS overlay between the supervised and the
unsupervised classifications was used to produce a report
listing all the unsupervised classes that were needed to
complete the final classification. That is, an unclassified
area in the supervised classification was "filled in" by one
or several classes from the unsupervised classification. A
second overlay was then performed between the two
classifications to generate a list of all the unsupervised
classes and their corresponding supervised classes (that is,
the class values that share the same pixel location). A
summary table showing the number of supervised classes
represented by each of the unsupervised classes was
generated using grid analysis software. An example is
presented in Table 2.

“

Table 2: Distribution of supervised classes within one

~unsupervised class

Unsupervised Supervised
Class Class Number of Pixels
15 0 15040
15 1 8204
15 16 5744
15 28 10
15 29 3221
15 50 2626
15 52 1146
15 54 9803
15 55 140

This summary table was then referenced as a class
description by the aggregation software that we developed to
generate labels for the unsupervised classes, that were used
to fill unclassified areas in the supervised classification.
The labeling program assigns labels for the unsupervised
spectral classes based on the frequency distribution of
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supervised classes that correspond to each unsupervised.
class. Of course there is always the possibility that an
unsupervised spectral class might be completely unclassified
with respect to the supervised classification. This would
indicate that more training data were needed to characterize
this unsupervised class.

FINAL THOUGHTS

Preliminary accuracy assessments indicate the spectral
classes represented by these methods are more specific to
one particular vegetation condition and site, than spectral
classes generated using more conventional techniques. The
main difference with our approach is that many more classes
are generated, and class variance is much lower than classes
developed from conventional techniques. Defining precise
spectral signatures is desireable yet dealing with 200
spectral classes is undesirable. We were able to work with
large numbers of spectral classes since we used the pixel
classification only as an intermediate product. The final
polygon map was aggregated from the pixel data.
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